Concepts

Kubernetes v1.16 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see the latest version.

Edit This Page

Ingress

FEATURE STATE: Kubernetes v1.1 beta
This feature is currently in a beta state, meaning:

  • The version names contain beta (e.g. v2beta3).
  • Code is well tested. Enabling the feature is considered safe. Enabled by default.
  • Support for the overall feature will not be dropped, though details may change.
  • The schema and/or semantics of objects may change in incompatible ways in a subsequent beta or stable release. When this happens, we will provide instructions for migrating to the next version. This may require deleting, editing, and re-creating API objects. The editing process may require some thought. This may require downtime for applications that rely on the feature.
  • Recommended for only non-business-critical uses because of potential for incompatible changes in subsequent releases. If you have multiple clusters that can be upgraded independently, you may be able to relax this restriction.
  • Please do try our beta features and give feedback on them! After they exit beta, it may not be practical for us to make more changes.

An API object that manages external access to the services in a cluster, typically HTTP.

Ingress can provide load balancing, SSL termination and name-based virtual hosting.

Terminology

For clarity, this guide defines the following terms:

Node
A worker machine in Kubernetes, part of a cluster.
Cluster
A set of Nodes that run containerized applications managed by Kubernetes. For this example, and in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
Edge router
A router that enforces the firewall policy for your cluster. This could be a gateway managed by a cloud provider or a physical piece of hardware.
Cluster network
A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
Service
A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors. Unless mentioned otherwise, Services are assumed to have virtual IPs only routable within the cluster network.

What is Ingress?

Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic routing is controlled by rules defined on the Ingress resource.

    internet
        |
   [ Ingress ]
   --|-----|--
   [ Services ]

An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting. An Ingress controller is responsible for fulfilling the Ingress, usually with a load balancer, though it may also configure your edge router or additional frontends to help handle the traffic.

An Ingress does not expose arbitrary ports or protocols. Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.

Prerequisites

You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.

You may need to deploy an Ingress controller such as ingress-nginx. You can choose from a number of Ingress controllers.

Ideally, all Ingress controllers should fit the reference specification. In reality, the various Ingress controllers operate slightly differently.

Note: Make sure you review your Ingress controller’s documentation to understand the caveats of choosing it.

The Ingress Resource

A minimal Ingress resource example:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: test-ingress
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - http:
      paths:
      - path: /testpath
        backend:
          serviceName: test
          servicePort: 80

As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields. For general information about working with config files, see deploying applications, configuring containers, managing resources. Ingress frequently uses annotations to configure some options depending on the Ingress controller, an example of which is the rewrite-target annotation. Different Ingress controller support different annotations. Review the documentation for your choice of Ingress controller to learn which annotations are supported.

The Ingress spec has all the information needed to configure a load balancer or proxy server. Most importantly, it contains a list of rules matched against all incoming requests. Ingress resource only supports rules for directing HTTP traffic.

Ingress rules

Each HTTP rule contains the following information:

  • An optional host. In this example, no host is specified, so the rule applies to all inbound HTTP traffic through the IP address specified. If a host is provided (for example, foo.bar.com), the rules apply to that host.
  • A list of paths (for example, /testpath), each of which has an associated backend defined with a serviceName and servicePort. Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • A backend is a combination of Service and port names as described in the Service doc. HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.

A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.

Default Backend

An Ingress with no rules sends all traffic to a single default backend. The default backend is typically a configuration option of the Ingress controller and is not specified in your Ingress resources.

If none of the hosts or paths match the HTTP request in the Ingress objects, the traffic is routed to your default backend.

Types of Ingress

Single Service Ingress

There are existing Kubernetes concepts that allow you to expose a single Service (see alternatives). You can also do this with an Ingress by specifying a default backend with no rules.

service/networking/ingress.yaml
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: test-ingress
spec:
  backend:
    serviceName: testsvc
    servicePort: 80

If you create it using kubectl apply -f you should be able to view the state of the Ingress you just added:

kubectl get ingress test-ingress
NAME           HOSTS     ADDRESS           PORTS     AGE
test-ingress   *         107.178.254.228   80        59s

Where 107.178.254.228 is the IP allocated by the Ingress controller to satisfy this Ingress.

Note: Ingress controllers and load balancers may take a minute or two to allocate an IP address. Until that time, you often see the address listed as <pending>.

Simple fanout

A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested. An Ingress allows you to keep the number of load balancers down to a minimum. For example, a setup like:

foo.bar.com -> 178.91.123.132 -> / foo    service1:4200
                                 / bar    service2:8080

would require an Ingress such as:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: simple-fanout-example
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - path: /foo
        backend:
          serviceName: service1
          servicePort: 4200
      - path: /bar
        backend:
          serviceName: service2
          servicePort: 8080

When you create the Ingress with kubectl apply -f:

kubectl describe ingress simple-fanout-example
Name:             simple-fanout-example
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:4200 (10.8.0.90:4200)
               /bar   service2:8080 (10.8.0.91:8080)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     22s                loadbalancer-controller  default/test

The Ingress controller provisions an implementation-specific load balancer that satisfies the Ingress, as long as the Services (service1, service2) exist. When it has done so, you can see the address of the load balancer at the Address field.

Note: Depending on the Ingress controller you are using, you may need to create a default-http-backend Service.

Name based virtual hosting

Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.

foo.bar.com --|                 |-> foo.bar.com service1:80
              | 178.91.123.132  |
bar.foo.com --|                 |-> bar.foo.com service2:80

The following Ingress tells the backing load balancer to route requests based on the Host header.

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: name-virtual-host-ingress
spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - backend:
          serviceName: service1
          servicePort: 80
  - host: bar.foo.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80

If you create an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.

For example, the following Ingress resource will route traffic requested for first.bar.com to service1, second.foo.com to service2, and any traffic to the IP address without a hostname defined in request (that is, without a request header being presented) to service3.

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: name-virtual-host-ingress
spec:
  rules:
  - host: first.bar.com
    http:
      paths:
      - backend:
          serviceName: service1
          servicePort: 80
  - host: second.foo.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80
  - http:
      paths:
      - backend:
          serviceName: service3
          servicePort: 80

TLS

You can secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate. Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination. If the TLS configuration section in an Ingress specifies different hosts, they are multiplexed on the same port according to the hostname specified through the SNI TLS extension (provided the Ingress controller supports SNI). The TLS secret must contain keys named tls.crt and tls.key that contain the certificate and private key to use for TLS. For example:

apiVersion: v1
kind: Secret
metadata:
  name: testsecret-tls
  namespace: default
data:
  tls.crt: base64 encoded cert
  tls.key: base64 encoded key
type: kubernetes.io/tls

Referencing this secret in an Ingress tells the Ingress controller to secure the channel from the client to the load balancer using TLS. You need to make sure the TLS secret you created came from a certificate that contains a Common Name (CN), also known as a Fully Qualified Domain Name (FQDN) for sslexample.foo.com.

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  name: tls-example-ingress
spec:
  tls:
  - hosts:
    - sslexample.foo.com
    secretName: testsecret-tls
  rules:
    - host: sslexample.foo.com
      http:
        paths:
        - path: /
          backend:
            serviceName: service1
            servicePort: 80
Note: There is a gap between TLS features supported by various Ingress controllers. Please refer to documentation on nginx, GCE, or any other platform specific Ingress controller to understand how TLS works in your environment.

Loadbalancing

An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others. More advanced load balancing concepts (e.g. persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.

It’s also worth noting that even though health checks are not exposed directly through the Ingress, there exist parallel concepts in Kubernetes such as readiness probes that allow you to achieve the same end result. Please review the controller specific documentation to see how they handle health checks ( nginx, GCE).

Updating an Ingress

To update an existing Ingress to add a new Host, you can update it by editing the resource:

kubectl describe ingress test
Name:             test
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:80 (10.8.0.90:80)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     35s                loadbalancer-controller  default/test
kubectl edit ingress test

This pops up an editor with the existing configuration in YAML format. Modify it to include the new Host:

spec:
  rules:
  - host: foo.bar.com
    http:
      paths:
      - backend:
          serviceName: service1
          servicePort: 80
        path: /foo
  - host: bar.baz.com
    http:
      paths:
      - backend:
          serviceName: service2
          servicePort: 80
        path: /foo
..

After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.

Verify this:

kubectl describe ingress test
Name:             test
Namespace:        default
Address:          178.91.123.132
Default backend:  default-http-backend:80 (10.8.2.3:8080)
Rules:
  Host         Path  Backends
  ----         ----  --------
  foo.bar.com
               /foo   service1:80 (10.8.0.90:80)
  bar.baz.com
               /foo   service2:80 (10.8.0.91:80)
Annotations:
  nginx.ingress.kubernetes.io/rewrite-target:  /
Events:
  Type     Reason  Age                From                     Message
  ----     ------  ----               ----                     -------
  Normal   ADD     45s                loadbalancer-controller  default/test

You can achieve the same outcome by invoking kubectl replace -f on a modified Ingress YAML file.

Failing across availability zones

Techniques for spreading traffic across failure domains differs between cloud providers. Please check the documentation of the relevant Ingress controller for details. You can also refer to the federation documentation for details on deploying Ingress in a federated cluster.

Future Work

Track SIG Network for more details on the evolution of Ingress and related resources. You may also track the Ingress repository for more details on the evolution of various Ingress controllers.

Alternatives

You can expose a Service in multiple ways that don’t directly involve the Ingress resource:

What's next

Feedback